A Recursive Restricted Total Least-Squares Algorithm
نویسندگان
چکیده
منابع مشابه
A recursive total least squares algorithm for deconvolution problems
Deconvolution problems are encountered in signal processing applications where an unknown input signal can only be observed after propagation through one or more noise corrupted FIR channels. The first step in recovering the input usually entails an estimation of the FIR channels through training based or blind algorithms. The ’standard’ procedure then uses least squares estimation to recover t...
متن کاملThe matrix-restricted total least-squares problem
We present and study the matrix-restricted total least squares (MRTLS) devised to solve linear systems of the form Ax b where A and b are both subjected to noise and A has errors of the form DEC. D and C are known matrices and E is unknown. We show that the MRTLS problem amounts to solving a problem of minimizing a sum of fractional quadratic terms and a quadratic function and compare it to the...
متن کاملSplitting the recursive least-squares algorithm
Exponentially weighted recursive least-squares (RLS) algorithms are commonly used for fast adaptation. In many cases the input signals are continuous-time. Either a fully analog implementation of the RLS algorithm is applied or the input data are sampled by analog-to-digital (AD) converters to be processed digitally. Although a digital realization is usually the preferred choice, it becomes unf...
متن کاملA Regularized Total Least Squares Algorithm
Error-contaminated systems Ax ≈ b, for which A is ill-conditioned, are considered. Such systems may be solved using Tikhonov-like regularized total least squares (R-TLS) methods. Golub et al, 1999, presented a direct algorithm for the solution of the Lagrange multiplier formulation for the R-TLS problem. Here we present a parameter independent algorithm for the approximate R-TLS solution. The a...
متن کاملA robust fast recursive least squares adaptive algorithm
Very often, in the context of system identification, the error signal which is by definition the difference between the system and model filter outputs is assumed to be zero-mean, white, and Gaussian. In this case, the least squares estimator is equivalent to the maximum likelihood estimator and hence, it is asymptotically efficient. While this supposition is very convenient and extremely usefu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Signal Processing
سال: 2014
ISSN: 1053-587X,1941-0476
DOI: 10.1109/tsp.2014.2350959